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Abstract

A higher-order sandwich theory is implemented in conjunction with an equivalent mobility-based power flow

progressive method to determine power flow for a sandwich configured floating raft vibration isolation system. The power

spectrum changes in whole frequency range effectively when core materials’ properties change. It is also shown that the loss

factors of the sandwich configured floating raft influence the power flow transmitted to the foundation effectively in the

medium- to high-frequency range and that the resonant peak cannot be avoided by increasing damping only in high-

frequency ranges which is not found in floating raft isolation systems with isotropic beams.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Power flow analysis (PFA) approaches have been used to predict dynamic characteristics of coupled systems
composed of various subsystems. The fundamental concept of power flow is discussed by Goyder and White
[1] and Pinnington and White [2]. In recent years, this approach has been developed and applied to model
complex structure [3–12] and to assess passive, active and vibration control system [8,13–17]. Langley [3]
presented the dynamic stiffness method to investigate forced vibration of a row of stiffened rectangular panels,
simply supported along the longitudinal edges. Clarkson [4] applied the receptance method to investigate the
transmission of vibrational energy across structural joints of connected beams and connected plates. Cuschieri
[5] used a mobility method to analyse the power flow in periodically connected beams and L-plates subject to a
single excitation. Hussein and Hunt [6] applied the mean power flow method to evaluate the effectiveness of
vibration countermeasures of an underground tunnel model which consisted of Euler–Bernoulli beams to
account for the rails and the track slab. For complex structures, finite element analysis (FEA) is often used to
analyse dynamic behaviours with good accuracy in low-frequency range. Jenkins et al. [7] used a finite element
model to demonstrate the detailed dynamics of a typical raft-isolation-receiver system using secondary force
inputs in parallel with a passive isolation system. They showed that a combined active/passive isolation system
is more effective than a passive isolation system at low frequencies. Qu and Selvam [18] developed dynamic
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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condensation to reduce the number of degrees of freedom (DOF) of finite element models for a damped
system. However FEA schemes are usually computationally expensive because of relatively large number of
DOF needed to capture the shorter wavelengths of vibration. Thus, it is difficult to analyse problem with high-
frequency ranges.

The frequency response function method is more suitable to a system consisting of only two subsystems.
However as the number of subsystems increases so the computational effort increases. The four-pole
parameters method [19,20] is a classical technique for deriving dynamic characteristics of an assembled system
connected in series or in parallel. This is convenient when considering a series of dynamical elements
connected end-to-end. However, it is limited to single-input/single-output (SISO) linear mechanical systems.
The four-pole parameters method was extended to multiple-input/multiple-output (MIMO) linear systems
considering coupling interactions by Ha and Kim [21] to predict the frequency response characteristics and by
Xiong [8] to estimate power flow transmission mechanisms.

PFA has become widely used to predict vibrational power flows through various kinds of assembled
structures. Xiong et al. [9] investigated power flow in a flexible floating raft isolation system using the
substructure mobility synthesis method. For a generic coupled system consisting of any number of
substructures, Xiong et al. [10] developed progressive approaches to PFA and applied them to a complex
coupled floating raft vibration isolation system. Generalized mobility/impedance matrix formulations of each
substructure were derived allowing the construction of equivalent mobility and equivalent impedance matrices
to describe the dynamic behaviour of a substructure assembled from several inter-connected substructures
within the overall system. Application examples showed that an increase in dynamic stiffness of the raft
reduces the vibrating power transmitted from the machinery via the raft to the flexible foundation.

A sandwich type floating raft system offers the advantage that the whole system is much lighter in addition
to reducing vibration and noise [22]. Sandwich configurations are used where high stiffness/weight and
strength/weight ratios are required. The flexural stiffness of a sandwich beam is proportional to d2h=4, where d

and h are the thickness of the core material and skin, respectively. Due to the high stiffness/weight which
results in a higher natural frequency, the number of responding modes is drastically reduced [23]. Another
advantage of using a sandwich configuration is that power flow levels tend to reduce as the viscoelasticity level
of the core material increases [11]. Investigation on an active vibration control of energy flow from a machine
transmitted to equipment, both mounted on a simply supported PVC sandwich panel, showed that increasing
damping ratio of the core material of the sandwich panel reduces the resonant peaks of power flow
transmission spectra to the equipment [11]. Sandwich structures with viscoelastic cores such as PVC that have
relatively high ratios of energy dissipation to energy storage capability have been used in a variety of structural
engineering applications where damping is required to dissipate energy [24].

Analytical models for sandwich structures have been studied using classical sandwich theory [25], first shear
deformation theory [26], elastic foundation model [27] and various higher-order models where the higher-
order terms are defined at the neutral axis [28]. However, these models have a drawback when sandwich
structures are thick, the ratio of the transverse shear modulus to in-plane is low, and the ratio of longitudinal
to transverse Young’s moduli is high [29]. The characterization of sandwich structure with soft cores need to
be simulated with the aid of an enhanced theory that can constitute its vertical flexibility which affects stress
and displacement fields in the face sheets and influences nonlinear displacement patterns along the height of
the core [30]. Most recently developed higher-order sandwich panel theory (HSAPT) [31] has shown the
accuracy of predicted stress, localized effect and eigenvalue problems and validated by experimental results
[30,32].

Gupta and Nakra [22] investigated effective vibration isolation by the use of an excitation system supported
flexibly on a three-layer sandwich beam. However, this was analysed separately as a continuous system by a
lumped mass supported on a spring and dash-pot. Li et al. [12] studied power flow via a floating raft consisting
of a three-layer sandwich beam connected to two sandwich foundation beams of the same type. However,
higher-order effects owing to the nonlinear displacement pattern of the core material were not considered.
Since the flexibility affects internal resultants in skins, peeling and shear stresses in the core [25,33], the
transverse shear interaction between skins and core material is also an important factor in the vibration
response of a sandwich beam with a soft core, which induces the damping for sandwich structure with
viscoelastic cores [29].
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In this paper, the HSAPT is implemented in conjunction with progressive approaches of PFA to determine
power flows in a sandwich configured floating raft vibration isolation system.

2. Application of power flow progressive method

The equivalent mobility-based power flow progressive approach [10] is applied. The general coupled system
consisting of each substructure S1, S2; . . . ;Si; . . . ;Sn is shown in Fig. 1. The power flow transmitted into any
substructure is given by

Pi ¼
1
2RefFH

i � vig; i ¼ 1; 2; . . . ; n, (1)

where Pi denotes the power flow through any interface of the ith substructure, H the Hermitian transpose,
the force vectors and velocity response vectors are determined by the following progressive formulations [10]:

vi ¼ Ae
i � Fi þNv

i � v̂nþ1,

Fiþ1 ¼ ½A
e
iþ1 � A22

i �
�1 � A21

i � Fi þ ½A
22
i � Ae

iþ1�
�1 �Nv

iþ1 � v̂nþ1,

Ae
i ¼ A11

i � A12
i � ½A

22
i � Ae

iþ1�
�1 � A21

i ,

Nv
i ¼ Av

i � A
v
iþ1 . . .A

v
n,

Av
i ¼ A12

i � ½A
22
i � Ae

iþ1�
�1 ði ¼ 1; 2; . . . ; nÞ,

Ae
nþ1 ¼ 0, (2)

where Ae
i is the equivalent mobility matrix of substructure Si coupled to subsystems Siþ1; . . . ;Sn ði ¼

1; 2; . . . ; nÞ and Nv
i is the velocity transmissibility matrix which represents the velocity response vector vi

produced by a unit velocity input v̂nþ1, and it reflects the effect of the boundary motion excitations v̂nþ1 upon
substructure Si ði ¼ 1; 2; . . . ; nÞ.

A floating sandwich raft isolation system as shown in Fig. 2 comprises: (1) rigid masses representing the
source of vibration such as machinery, e.g. substructure S1; (2) viscoelastic isolators, e.g. substructure S2 and
S4; (3) a sandwich floating raft, e.g. substructure S3; and (4) a sandwich beam base structure, e.g. substructure S5.

For substructure S1, with two inputs and four outputs of the two rigid masses, it is assumed that each mass
is supported by two isolators which behave in a passive way, and that motion takes place only in the vertical
direction. The generalized mobility matrix A1 is as follows:

v1

v2

( )
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A11
1 A12

1

A21
1 A22
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�

F1

F2

( )
, (3)
S1 S2
11 v,F

Si Si+1

1p 2p 3p

Sn-1 Sn

22 v,F 33 v,F

ii v,F 1i1i v,F 2i2i v,F

1n1n v,F nn v,F 1n1n v,F

ip 1ip 2ip

1np np

Fig. 1. Schematic illustration of the coupled systems with n substructures.
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where F1 is the prescribed excitation force and the sub-matrices of matrix A1 are given by

A11
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1

jo
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0 1=m2

" #
, (4)
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. (6)

Fig. 3 shows the sandwich beam (S3) which is the floating raft as shown in Fig. 2. For the isolator substructure
S2 consisting of M identical isolators, the generalized mobility matrix A2 is presented by

A11
2 ¼ diag

1

joMl

þ
jo
2K�l

� �
M�M

, (7)

A12
2 ¼ diag

1

joMl

� �
M�M

¼ A21
2 , (8)

A22
2 ¼ A11

2 , (9)
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where Ml is the mass of each isolator. Similarly, for the isolator substructure S4 consisting of N identical
isolators shown in Fig. 3, the generalized mobility matrix A4 is presented by

A11
4 ¼ diag

1

joMs

þ
jo
2K�s

� �
N�N

, (10)

A12
4 ¼ diag

1

joMs

� �
N�N

¼ A21
4 , (11)

A22
4 ¼ A11

4 , (12)

where Ms is the mass of each isolator. For the flexible raft structure S3, the mobility matrix A3 can be derived
by using a modal analysis method as follows:

A11
3 ¼ ½wlsðx

ð3Þ
l ;x

ð3Þ
s Þ�M�M , (13)

A12
3 ¼ ½wlsðx

ð3Þ
l ; x

ð4Þ
s Þ�M�N , (14)

A21
3 ¼ ½wlsðx

ð4Þ
l ; x

ð3Þ
s Þ�N�M , (15)

A22
3 ¼ ½wlsðx

ð4Þ
l ;x

ð4Þ
s Þ�N�N , (16)

where xlðl ¼ 1; 2; 3; . . . ;MÞ are the positional co-ordinates of the isolators in the substructure S2 mounted
between the rigid masses and the top skin of the sandwich floating raft in the substructure S3, and xsðs ¼

1; 2; 3; . . . ;NÞ denote the positional coordinates of the substructure S4 mounted between the sandwich floating
raft and the sandwich base structure. Here, the components of the mobility matrix A12

3 of the floating raft can
be described as follows:

wlsðx
ð3Þ
l ;x

ð4Þ
s Þ ¼

jo
m

X1
n¼1

cð3Þn ðx
ð3Þ
l Þc

ð4Þ
n ðx

ð4Þ
s Þ

½Oð3Þn �
2ð1þ jZð3Þn Þ � o2

ðl ¼ 1; . . . ;M ; s ¼ 1; . . . ;NÞ, (17)

where the normal mode functions of the top and bottom skins of the free sandwich beam for the raft structure
in S3 are denoted by cð3Þn and cð4Þn , respectively.

Similarly, the mobility matrix of the base sandwich structure S5 can be described as follows:

A5 ¼ ½Xskðx
ð5Þ
s ;x

ð5Þ
k Þ�N�N ðs; k ¼ 1; 2; . . . ;NÞ. (18)

The components of the mobility matrix of the base structure can be described as follows:

Xskðx
ð5Þ
s ; x

ð5Þ
k Þ ¼

jo
m

X1
n¼1

jð5Þn ðx
ð5Þ
s Þj

ð5Þ
n ðx

ð5Þ
k Þ

½Oð5Þn �
2ð1þ jZð5Þn Þ � o2

, (19)

where jð5Þn denotes the normal mode functions of the top skins of the clamped sandwich beam for the base
structure in S5.

The analysis of normal mode function and loss factor for sandwich beams is described in Section 3.

3. Natural vibration characteristics of sandwich beams using higher-order theory

In order to estimate the total power flow in a sandwich floating raft isolation system, the natural
characteristics of sandwich structures need to be studied first. For numerical simplicity the floating raft,
substructure S3, can be modelled as a free–free sandwich beam while the base structure, substructure S5, can
be modelled as a clamped–clamped sandwich beam.

To estimate the natural vibration characteristics of a sandwich beam, the homogeneous solution including
natural frequencies and corresponding modes needs to be obtained. Then the variation of mode shapes and
natural frequencies with free–free and clamped beam at both ends are deduced.
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There are many possible approaches to predict vibration behaviour of a sandwich beam, including classical
sandwich theory, elastic foundation models and various higher-order theories [34,35]. Since a shear-induced
effect caused by the flexibility of the core needs to be modelled, a HSAPT appears to be most appropriate
[34,36,37].

The geometry of a typical sandwich beam is illustrated in Fig. 4. In HSAPT, the skins of the sandwich
beam are modelled as ordinary beams, without shear strains, that follow Euler–Bernolli assumptions
and are subjected to small deformations. The transversely flexible core layer is considered as a two-
dimensional elastic medium with small deformations where its thickness may change under loading,
and its cross section does not remain planar. The longitudinal (in-plane) stresses in the core can be
neglected owing to the low flexural stiffness of the core material. The interface layers between the skins
and the core are assumed to be bonded perfectly and to provide continuity of the deformations at the
interfaces. From variational calculus, the governing equations based on Frostig’s HSAPT are extended to
include viscoelastic material properties in terms of each variation (dut, dub, dwt, dwb, dtc) as in the following
equations:

E�Atut;xx þ btc � ðmt þmc=3Þ €ut � ðmc=6Þ €ub þ ðmcdt=6Þ €wt;x � ðmcdb=12Þ €wb;x ¼ 0, (20)

E�Abub;xx � btc � ðmb þmc=3Þ €ub � ðmc=6Þ €ut � ðmcdb=6Þ €wb;x þ ðmcdt=12Þ €wt;x ¼ 0, (21)

E�I twt;xxxx � ððcþ dtÞb=2Þtc;x � ðbE�c=cÞðwb � wtÞ þ ðmt þmc=3Þ €wt

þ ðmc=6Þ €wb þ ðmcdt=6Þ €ut;x þ ðmcdt=12Þ €ub;x � ðmcd2
t =12Þ €wt;xx þ ðmcdtdb=24Þ €wb;xx ¼ 0, (22)

E�Ibwb;xxxx � ððcþ dbÞb=2Þtc;x þ ðbE�c=cÞðwb � wtÞ þ ðmb þmc=3Þ €wb

þ ðmc=6Þ €wt � ðmcdb=6Þ €ub;x þ ðmcdb=12Þ €ut;x � ðmcd2
b=12Þ €wb;xx þ ðmcdtdb=24Þ €wt;xx ¼ 0, (23)

ub � ut � ðc=G�c Þtc þ ððc
3=12Þ=E�c Þtc;xx þ ððcþ dtÞ=2Þwt;x þ ððcþ dbÞ=2Þwb;x ¼ 0, (24)

where At, Ab are cross-sectional areas of the top and bottom skins and I t, Ib are second moments of inertia of
the top and bottom skins, respectively and E�, E�c and G�c are the complex Young’s moduli of skins and core
and the complex shear modulus of the core, respectively, and

E� ¼ E0 þ iE00, (25)

E�c ¼ E 0c þ iE00c , (26)

G�c ¼ G0c þ iG00c , (27)

where E0, E0c, G0c are the storage moduli and E00, E00c , G00c are the loss moduli of the phase properties.
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The boundary conditions for the top and bottom skins at the left ðx ¼ 0Þ and right ðx ¼ LÞ edges of the
sandwich beam are as follows:

Np
xxðx ¼ 0;LÞ ¼ E�Apup;x ¼ 0 or up ¼ 0, (28)

Mp
xxðx ¼ 0;LÞ ¼ E�Ipwp;xx ¼ 0 or wp;x ¼ 0, (29)

E�I twt;xxx � ðdtb=2Þtc þ ðmcdt=6Þ €ut þ ðmcdt=12Þ €ub � ðmcd2
t =12Þ €wt;x þ ðmcdtdb=24Þ €wb;x ¼ 0, (30)

E�I twb;xxx � ðdbb=2Þtc � ðmcdb=12Þ €ut � ðmcdb=6Þ €ub � ðmcd2
b=12Þ €wb;x þ ðmcdtdb=24Þ €wt;x ¼ 0, (31)

where Np
xx and Mp

xx are the axial force and the bending moment capabilities of the skins.
The boundary conditions relevant to any point along the height (z) of the core are as follows:

tcðx ¼ 0Þ ¼ 0; tcðx ¼ LÞ ¼ 0 or

wcðx ¼ 0; z ¼ ZcÞ ¼ 0; wcðx ¼ L; z ¼ ZcÞ ¼ 0. (32)

The general vibration equation of motion can be written as

½M� €½D� þ ½K��½D� ¼ 0, (33)

where [M] is the mass matrix and [K�] the complex stiffness matrix.
The displacement vector is

½D�T ¼ ½wt wb ut ub tc�, (34)

where wt, wb and ut, ub are the displacements of top and bottom surfaces of the beam in the vertical and the
horizontal directions, respectively.

To analyse free vibration, assuming harmonic behaviour in time, a general solution of the form, ½D� ¼
½L� expðiotÞ is considered where o is the complex eigen frequency and t is the time. Thus governing Eq. (33) is
changed

ð½K̄�� � l�½M̄�Þ½L� ¼ 0, (35)

where l� is a complex eigenvalue, [L] is the matrix of eigenvectors and [M̄] and [K̄�] are ordinary symmetric
matrices of the mass and frequency-dependent complex stiffness, respectively, details of which are given in
Appendix A. The full solution of the free vibration problem is achieved with the appropriate boundary
conditions. After obtaining the complex eigenvalues, the complex circular frequency O� and the modal loss
factor Zn of the sandwich beam can be calculated for each mode from

l�n ¼ l0n þ il00n ; Zn ¼
l00n
l0n

, (36)

where, l0n and l00n are real and imaginary eigenvalues, respectively [38]. The transverse displacement of each
skin wpðx; tÞ, is

wpðx; tÞ ¼
X1
n¼1

cp
nðxÞq

p
nðtÞ, (37)

where cp
nðxÞ are mass normalized mode shapes as described in Eqs. (17) and (19) and qp

nðtÞ is time-dependent
coordinates, respectively, p denotes t(top) or b(bottom).

Numerical free vibration analyses results using this higher-order sandwich theory implementation are
validated with FEA solutions in Appendix B.

4. Power flow analysis for sandwich floating raft vibration isolation system

For numerical calculations, the following data are used: m1 ¼ 50 kg, m2 ¼ 30 kg, bij ¼ 25mm ði; j ¼ 1; 2Þ.
The stiffness and mass of the isolator in substructure 2 is 20N/mm (Kl) and 0.5 kg (Ml) and those of the
isolator in substructure 4 is 40N/mm (Ks) and 0.5 kg (Ms). Four isolators, two at each mass, are used in
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substructure 2 while three isolators are used in substructure 4. The loss factor (ZI ) of the isolators in
substructures 2 and 4 is 0.05. Vertical harmonic excitation forces are of the forms f 11 ¼ eiot, f 12 ¼ 2f 11. The
sandwich beam in substructures S3 and S5 consists of two glass–ceramic skins of dimensions 300� 30�
1:0mm3 which are bonded to the top and bottom of a PVC core of dimensions 300� 30� 20mm3. Young’s
modulus of the isotropic glass–ceramic skins and the shear modulus of the core are 36GPa and 20MPa,
respectively and the respective densities of the skins and core are 4,400 and 52.06 kg/m3, as used in Sokolinsky
et al. [30]. The loss factor (ZI ) of the core materials is 0.05.

4.1. Input power and transmitted power

Fig. 5 compares the input power spectrum P1 owing to the two machines to the total power flow
transmission spectra P3 and P5. The difference between them indicates the energy dissipated in this raft
isolation system. It can be seen that the input power flow spectrum P1 is relatively simple in form with three
pronounced peaks corresponding to the natural frequencies of the isolation system. The transmission spectra
P3 and P5, however, vary significantly with the exciting frequencies in the medium- and high-frequency range,
since they now contain contributions from the elastic mode coupled dynamics of the overall system. The
relatively small number of coupled system and intermediate mass of isolators at substructure 3 reduce the
number of peaks and power spectrum P3, respectively. The number of peaks indicate that the total input
power spectrum P1 is less sensitive than the total transmitted power spectrum to the changes of the excitation
frequencies as shown in Fig. 5. The behaviour of the power flow spectrum is supported by numerical results
[10]. Based on the parameters described in the previous section, the influence of different variables such as
thickness of core, thickness of skin, stiffness of sandwich raft and base structure and the effect of isolators on
power transmitted to the flexible foundation are discussed below.

4.2. Effect of sandwich raft on power transmissions

Fig. 6 a compares power flow spectra P5 considering different thicknesses of core material in substructure 3.
When the thickness of the core increases from 20 to 80mm, the transmitted power spectrum decreases. The
reason for this is that when the thickness of the core increases the stiffness of the sandwich beam also
increases, which results in decreasing power transmitted to the base structure. This again is supported by the
conclusion in Xiong et al. [39]. This indicates that an increase in core thickness of the sandwich raft increases
its stiffness, thus reducing the power transmitted to the foundation at low-frequency ranges, and alters
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resonant peaks at medium-frequency ranges, hence providing good vibration isolation. This result shows good
agreement with the trends in Li et al. [12], i.e. that the transmitted energy decreases as thickness of the core
increases. Fig. 6b compares power flow spectra with different thicknesses of skin material of the sandwich raft.
The change in thickness of the skin materials does not affect the power spectrum at low-frequency ranges.
From medium-frequency ranges to high-frequency ranges, the transmitted power spectrum decreases
prominently with the increase of skin thickness.

4.3. Effect of sandwich base structure on power transmissions

Fig. 7a shows power flow spectra of the isolation system with different thickness of core material of
sandwich beam in substructure 5. Similar to the result of Fig. 6a, the core thickness changes also affect the
transmitted power. However, since decreased power flow from floating raft may not be effective to further
decreasing power flow at foundation, change in the power flow spectrum of the foundation is less significant
than that of the floating raft in the whole frequency range.
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Fig. 7. Comparison of power flow spectra under the different thickness of (a) core material and (b) skin material in substructure 5.
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Fig. 7b presents power flow spectra with different thicknesses of skin material of sandwich beam for
substructure S5. The change in thickness of the skin material does not affect much on power spectrum in the
whole frequency ranges. Even though there are power decreases at high frequencies, the power reduction is not
much more effective than that of the floating raft, substructure S3.
4.4. Changing skin and core modulus of raft beam

Fig. 8a shows a comparison of power flow spectra with different properties of skin material of the sandwich
beam in substructure 3. The reference Young’s modulus (Eref ) of the skin material is 36GPa. It is clear that
even though the modulus changes by a ten-fold margin there is little effect on the power flow spectrum because
it cannot reflect the whole stiffness of the floating raft effectively. Fig. 8b shows a comparison of power flow
spectra with the different properties of core material of sandwich beam in substructure 3, where reference
shear modulus (Gref ) of the core material is 20MPa. This result shows that property change of the core
material is more effective than that of the skin material.
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Fig. 8. Comparison of power flow spectra under the different properties of (a) skin material and (b) core material in substructure 3.
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4.5. Effect of isolators

Fig. 9 shows a comparison of transmitted power spectra with different stiffness of the isolators in
substructures 2 and 4. The respective reference stiffnesses (K ref ) of the isolators are 20 and 40N/mm in
substructures 2 and 4. Comparisons are made with isolators stiffnesses of one tenth and ten times that of the
reference values, i.e. stiffness ratios of 0.1 and 10. Transmitted power spectrum changes as stiffness of the
isolator changes. Contrary to the results of sandwich beam structure, transmitted power changes in inverse
proportion to the change of the stiffness of the isolators. In Fig. 9a, the fundamental frequency of around
10Hz is altered as the stiffness of the isolator changes. However after 20Hz, the three curves of power
spectrum are identical. Fig. 9b shows that in lower-frequency range the resonant peaks dominated by isolators
are altered as the stiffness of the isolator changes up to 50Hz. This is because the coupling effect of the two
stage isolation system, in which the floating raft as well as base beam behave like rigid body. However above
the frequency of 50Hz the resonant peaks of the three power spectrum are identical because of the coupling
effect of elastic modes of raft and base beams. Since the stiffness of the isolators in substructure 4 is higher
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than that in substructure 2, the change of fundamental frequency ranges are shifted to higher-frequency
ranges. These results show that coupling mechanism between isolators and flexible beams need to be
considered in the design of the floating raft isolation systems.

4.6. Damping effect of core materials in sandwich raft beam

The influence of the damping effect for core materials of the floating raft can be observed in Fig. 10. It is
shown that increasing the loss factor of the core material reduces the resonant peaks of the transmitted power
flow spectra in the medium- to high-frequency ranges. At low-frequencies ranges, changes in the transmitted
powers cannot be observed. Also, there is not much effect on the reduction of resonant peak prominently.
However, the damping effect can be seen in the medium-frequency range at about 100Hz. It is interesting to
note that there is a pronounced peak observed in the transmitted power spectrum in P5 at about 650Hz. This
is because the modal damping of the sandwich raft beam corresponding to the symmetric vibration mode of
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the beam is very small. This phenomenon can be explained from in Fig. 10 which shows different modal loss
factors for each mode based on numerical calculation. This indicates that this resonant peak cannot be
avoided by increasing damping only in the high-frequency ranges, which is not found in floating raft isolation
system with isotropic beams. Further calculations show that this peak can be avoided by changing stiffness of
the raft and placement of isolators.
5. Conclusion

A higher-order sandwich theory is implemented in conjunction with an equivalent mobility-based power
flow progressive method to determine power flow for a sandwich configured floating raft vibration isolation
system. The generalized mobility matrices of a sandwich floating raft and flexible foundation are derived using
higher-order sandwich theory.

The results from the application of the models developed herein show the following attributes: (a) increasing
thickness of the core material of sandwich type floating raft decreases transmitted power more effectively than
that of foundation; (b) when different properties of core material of floating raft are used, the power spectrum
varies in whole frequency range, which leads to the conclusion that when a sandwich beam is considered as a
floating raft, the core material choice is more influential than that of skin material; (c) the stiffness change of
isolators does not affect the pattern of power spectrum in medium- and high-frequency ranges, though
compromises between numbers and stiffnesses of the isolators must be considered carefully; (d) the loss factors
of a sandwich configured floating raft influence the power flow transmitted to the foundation effectively from
medium- to high-frequency range. However the resonant peak corresponding to the symmetric mode of the
sandwich raft in high-frequency ranges cannot be avoided by increasing damping only. The resonant peak can
be avoided by changing stiffness of the raft and placement of isolators.
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Appendix A. Component of mass and stiffness matrix for simply supported sandwich beam

From Eq. (35) matrices of the mass and the complex stiffness are presented as follows [38]:
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where mt, mb, mc are mass of top, bottom and core, respectively and b is the width of the core and k is np=L,
where L is the length of the beam.
Table 1

Properties of the sandwich beam with a soft core [30]

Constituent Material Young’s modulus (GPa) Shear modulus (GPa) Poisson’s ratio Density (kg/m3)

Skins GRP 36 13.84 0.3 4400

Core PVC 0.05 0.02 0.25 52.060

Table 2

Comparison of natural frequencies of a sandwich beam with different boundary conditions (frequency, Hz)

Mode Clamped Free–free

ABAQUS HSAPT ABAQUS HSAPT

1 419 419 697 670

2 835 842 1193 1169

3 1299 1316 1707 1685

4 1757 1786 2161 2148

5 2211 2256 2640 2637

6 2658 2724 3069 3086

7 3100 3191 3531 3572

8 3535 3659 3922 3994

9 3963 4126 4386 4306

10 4384 4306 4533 4503
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Appendix B. Validation of free vibration of sandwich beams

In order to estimate the total power flow in sandwich floating raft isolation systems, the natural
characteristics of sandwich structures is of ultimate importance. In the vibration isolation system, free–free
sandwich beam is regarded as a floating raft while clamped–clamped sandwich beam is considered as a base
structure. Using higher-order sandwich plate theory, numerical free vibration analyses results are compared
with FEA solutions. Based on these results, power flow analysis for a sandwich floating raft vibration isolation
system can be presented.

The length of the beam is 300mm, the width of the beam is 20mm, the identical skins are 0.5mm thick, and
the thickness of the soft plastic foam core is 19.05mm. The mechanical properties of the skins corresponding
to an isotropic glass–ceramic material and those of the core corresponding to isotropic polymethacrylimide
rigid foam are given in Table 1.

Natural frequencies of the sandwich beam for each boundary condition are presented in Table 2. The FEA
model consists of 1800 elements and 1963 nodes using four bilinear node plain-strain quadrilateral elements
(CPE4). The core has 10 layers of elements through the thickness while each skin has one layer of element
through the thickness. The first 10 eigenvalues were obtained by using Lanczos eigenvalue solver (ABAQUS,
2006). Numerical results from Frostig’s higher-order sandwich theory matches well with those of FEA
solutions.

Fig. 11 presents the bending mode shapes of the free–free sandwich beams, which change depending on the
dimension and properties of skins and core materials. Most of vibration modes are similar to those of a
homogeneous beam. The top and bottom skins move in phase with each other in the antisymmetric mode.
However, the symmetric mode occurs at mode 9 as the skins move 1801 out of phase with respect to beam’s
neutral line. Both top and bottom skins are split at each edge with much smaller displacements [30].

Bending mode shapes in axial mode of the free–free sandwich beams are presented in Fig. 12. The results
show that vibration mode shapes of top and bottom skins are symmetric except for mode 9. This indicates that
antisymmetric behaviour in the bending mode corresponds to symmetric behaviour in the axial mode.
Compressive and tensive forces at each skin contribute to the modal loss factor. Fig. 13 shows different modal
loss factors for each mode based on numerical calculation. Note that the modal loss factor at mode 9 is nearly
zero. This is because when both top and bottom skins move together in the same axial mode, there is no energy
dissipation at the interface between the skins and core material.
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